
Parametric Fuzzy Implications Produced Via Classes of
Strong Negations

Stefanos Makariadis, Avrilia Konguetsof and Basil Papadopoulos

Democritus University of Thrace, School of Engineering, Department of Civil Engineering,
Section of Mathematics and Informatics

ICCMSE 2022 Conference

Stefanos Makariadis, Avrilia Konguetsof and Basil Papadopoulos (Duth)Parametric Fuzzy Implications Produced Via Classes of Strong NegationsDemocritus University of Thrace 1 / 37



Purpose

The purpose of this paper is the creation of new parametric fuzzy
implications via the two main fuzzy connectives, N-negations and
T-norms. The N-negations used are the Nλ, Nω and Nα and the
conjunctions are the TM , TP and TLK .
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Motivation

The produced parametric fuzzy implications as well as the strategy used to
create them offer more flexibility and speed in comparison to other
methods of generating fuzzy implications and their products.
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Introduction

Fuzzy implications generalizations were created. Bustince, Burillo and
Soria in 2003 [1], as well as Callejas, Marcos and Bedregal in 2012,
created a strategy which constructs any fuzzy implication, using
automorphism functions [2]. In 2020 and 2021 the survey on fuzzy
implications generalization was continued with the papers of Makariadis,
Souliotis and Papadopoulos [3], [4]. In 2022 the paper of
Makariadis-Papadopoulos [5] focused on fuzzy implications generalization
through automorphism functions.
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Introduction

The present paper aims at constructing generator fuzzy implications with
the composition of strong fuzzy negations and strict fuzzy t-norms,
bearing in mind the relevant papers ([3] and [4]). This gives the possibility
of changing the implication with one parameter, giving thus an algorithmic
procedure of the implication. The tools for the construction of generator
fuzzy implications are the classes of strong negations, as shown in table
[1], the strict fuzzy t-norms, as shown in table [2] and the equation linking
them ( Baczynski book, page 87 [6]). The generator fuzzy implications
which were produced are shown in table [3].
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Preliminaries (Fuzzy Negations)

Some definitions retrieved from the literature can be found in the following
references: (Baczyński M., 1.4.1–1.4.2 Definitions, pp. 13–14, [6]),
(Bedregal B.C., p. 1126, [7]), (Fodor J., 1.1–1.2 Definitions, p. 3, [8]),
(Gottwald S., 5.2.1 Definition, p. 85, [9]), (Weber S., 3.1 Definition, p.
121, [10]) and (Trillas E., p. 49, [11]).

Definition

A function N : [0, 1] → [0, 1] is called a Fuzzy negation if
(N1) : N(0) = 1, N(1) = 0;
(N2) : N is decreasing .
A fuzzy negation N is called strict if, in addition to the former properties,
the following apply:
(N3) : N is strictly decreasing;
(N4) : N is continuous.
A fuzzy negation N is called strong if the following property is satisfied:
(N5) : N(N(x)) = x , x ∈ [0, 1].
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The following table presents three well-known families of fuzzy negations.
Those fuzzy negations can be found in the work by Baczyński M., p. 15,
[6].

Table: Basic fuzzy negations classes.

Designation Equation
Sugeno class Nλ(x) = 1−x

1+λx , λ ∈ (−1,+∞)

Yager class Nω(x) = (1− xω)
1
ω , ω ∈ (0,+∞)

Souliotis-Papadopoulos class Nα(x) =
√

(a2 − 1)x2 + 1 + α · x , a ≤ 0

Stefanos Makariadis, Avrilia Konguetsof and Basil Papadopoulos (Duth)Parametric Fuzzy Implications Produced Via Classes of Strong NegationsDemocritus University of Thrace 7 / 37



Triangular Norms (Conjunctions)

The following definition can be found in: (Klement E.P et al., 1.1
Definition, pp. 4–10, [12]), (Baczyński M., 2.1.1, 2.1.2 Definitions, pp.
41–42, [6]) and (Weber S., 2.1 Definition, pp. 116–117, [10]).

Definition

A function T : [0, 1]2 → [0, 1] is called a triangular norm, shortly, t-norm,
if it satisfies, for all x , y ∈ [0, 1], the following conditions:
(T1) : T (x , y) = T (y , x), (commutativity);
(T2) : T (x ,T (y , z)) = T (T (x , y), z), (associativity);
(T3) : if y ≤ z , then T (x , y) ≤ T (x , z), (monotonicity);
(T4) : T (x , 1) = x , (boundary condition).
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In the following table, three well-known t-norms are presented. Those
t-norms can be found in: (Baczyński M., p. 42, [6]).

Table: Basic t-norms.

Designation Equation
Minimum TM(x , y) = min{x , y}
Algebraic product Tp(x , y) = x · y
Lukasiewicz TLK (x , y) = max(x + y − 1, 0)
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Fuzzy Implications

The fuzzy implication functions are probably some of the main functions in
fuzzy logic. They play a similar role to that played by classical implications
in crisp logic. The fuzzy implication functions are used to execute any
fuzzy “if-then” rule on fuzzy systems.
The following definition can be found: (Baczyński M., p. 2, [6]) and
(Fodor J., p. 299, [13]).

Definition

A binary operator I : [0, 1]2 → [0, 1] is said to be an implication function,
or an implication, if, for all x , y ∈ [0, 1], it satisfies:
(I1) : I (x , z) ≥ I (y , z) when x ≤ y , the first place antitonicity ;
(I2) : I (x , y) ≤ I (x , z) when y ≤ z , the second place isotonicity ;
(I3) : I (0, 0) = 1, boundary condition;
(I4) : I (1, 1) = 1, boundary condition;
(I5) : I (1, 0) = 0, boundary condition.
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Math and Equations

The equation: I (x,y)=N(T (x,N (y))), (see Corollary 2.5.31, p. 87, [6]) is
a composition of the two most well known connectives, the N-negations
and the T-norms. If in the N-negations’s place strong negation classes
(Nλ, Nω and Nα) are used and in the T-norms’s place fuzzy conjunctions
(TM , TP and TLK ) are used, then parametric fuzzy implication generators
are produced. Formulas [1, 2 and 3] can be used to generate the new
I-implications.
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Theorem 1

Assume the following:
1 A N : [0, 1] → [0, 1] strong negation function, which can be replaced

with the known from the literature fuzzy negations

Nλ(x) = 1−x
1+λx , λ > −1

Nω(x) = ω
√
1− xω, ω > 0

Nα(x) =
√
(a2 − 1)x2 + 1 + α · x , a ≤ 0
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Theorem 1

2 A continuous Archemedean and strict t-norm T : [0, 1]2 → [0, 1],
which can be replaced with the known from the literature fuzzy
conjunctions

TM(x , y) = min{x , y}
TP(x , y) = x · y
TLK (x , y) = max{x + y − 1, 0}
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Theorem 1

Then, there is a function Iλ : [0, 1]2 → [0, 1] which is a I-implication, such
that:

Iλ(x , y) = Nλ(T (x,Nλ (y))) (1)

Then, there is a function Iω : [0, 1]2 → [0, 1] which is a I-implication, such
that:

Iω(x , y) = Nω(T (x,Nω (y))) (2)

Then, there is a function Iα : [0, 1]2 → [0, 1] which is a I-implication, such
that:

Iα(x , y) = Nα(T (x,Nα (y))) (3)
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Proposition 1

Assume the following:
A Iλ : [0, 1]2 → [0, 1] fuzzy implication function, which is defined by
equation [1]

1 A conjugation function TM : [0, 1]2 → [0, 1], which is defined:
TM(x , y) = min{x , y}
Then, there is a function I 1λ : [0, 1]2 → [0, 1] which is a I-implication,
such that:

I 1λ(x , y) =
1−min

{
x , 1−y

1+λ·y

}
1 + λ ·min

{
x , 1−y

1+λ·y

} (4)

Stefanos Makariadis, Avrilia Konguetsof and Basil Papadopoulos (Duth)Parametric Fuzzy Implications Produced Via Classes of Strong NegationsDemocritus University of Thrace 15 / 37



Proposition 1

2 A conjugation function TP : [0, 1]2 → [0, 1], which is defined:
TP(x , y) = x · y
Then, there is a function I 2λ : [0, 1]2 → [0, 1] which is a I-implication,
such that:

I 2λ(x , y) =
1− x · 1−y

1+λ·y

1 + λ · x · 1−y
1+λ·y

(5)
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Proposition 1

3 A conjugation function TLK : [0, 1]2 → [0, 1], which is defined:
TLK (x , y) = max{x + y − 1, 0}
Then, there is a function I 3λ : [0, 1]2 → [0, 1] which is a I-implication,
such that:

I 3λ(x , y) =
1−max

{
x + 1−y

1+λ·y − 1, 0
}

1 + λ ·max
{
x + 1−y

1+λ·y − 1, 0
} (6)
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The graph [Figure 1] shows the fuzzy implications I 1λ , I
2
λ and I 3λ

constructed via the equations [4, 5 and 6] using Nλ and TM , TP and TLK .
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Figure: Graph of the Implications I 1λ, I
2
λ and I 3λ
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Proposition 2

Assume the following:
A Iω : [0, 1]2 → [0, 1] fuzzy implication function, which is define by
equation [2]

1 A conjugation function TM : [0, 1]2 → [0, 1], which is defined:
TM(x , y) = min{x , y}
Then, there is a function I 4ω : [0, 1]2 → [0, 1] which is a I-implication,
such that:

I 4ω(x , y) =
ω

√
1−

(
min

{
x , ω

√
1− yω

})ω
(7)
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Proposition 2

2 A conjugation function TP : [0, 1]2 → [0, 1], which is defined:
TP(x , y) = x · y
Then, there is a function I 5ω : [0, 1]2 → [0, 1] which is a I-implication,
such that:

I 5ω(x , y) =
ω

√
1− xω + (x · y)ω (8)
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Proposition 2

3 A conjugation function TLK : [0, 1]2 → [0, 1], which is defined:
TLK (x , y) = max{x + y − 1, 0}
Then, there is a function I 6ω : [0, 1]2 → [0, 1] which is a I-implication,
such that:

I 6ω(x , y) =
ω

√
1−

(
max

{
x + ω

√
1− yω − 1, 0

})ω
(9)
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The graph [Figure 2] shows the fuzzy implications I 4ω , I
5
ω and I 6ω

constructed via the equations [7, 8 and 9] using Nω and TM , TP and TLK .
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Figure: Graph of the Implications I 4ω, I
5
ω and I 6ω
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Proposition 3

Assume the following:
A Iα : [0, 1]2 → [0, 1] fuzzy implication function, which is defined by
equation [3]

1 A conjugation function TM : [0, 1]2 → [0, 1], which is defined:
TM(x , y) = min{x , y}
Then, there is a function I 7α : [0, 1]2 → [0, 1] which is a I-implication,
such that:

I 7a (x , y) =

√
(a2 − 1) .

(
min

{
x ,
√

(a2 − 1)y2 + 1 + α · y
})2

+ 1

+a ·min
{
x ,
√
(a2 − 1)y2 + 1 + α · y

}
(10)
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Proposition 3

2 A conjugation function TP : [0, 1]2 → [0, 1], which is defined:
TP(x , y) = x · y
Then, there is a function I 8α : [0, 1]2 → [0, 1] which is a I-implication,
such that:

I 8a (x , y) =

√
(a2 − 1) · x2 ·

(√
(a2 − 1) y2 + 1 + α · y

)2
+ 1

+a · x ·
(√

(a2 − 1) y2 + 1 + α · y
) (11)
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Proposition 3

3 A conjugation function TLK : [0, 1]2 → [0, 1], which is defined:
TLK (x , y) = max{x + y − 1, 0}
Then, there is a function I 9α : [0, 1]2 → [0, 1] which is a I-implication,
such that:

I 9a (x , y) =

√
(a2 − 1) .

(
max

{
x +

√
(a2 − 1)y2 + 1 + α · y − 1, 0

})2
+ 1+

a ·max
{
x +

√
(a2 − 1)y2 + 1 + α · y − 1, 0

}
(12)
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The graph [Figure 3] shows the fuzzy implications I 7α, I
8
α and I 9α constructed

via the equations [10, 11 and 12] using Nα and TM , TP and TLK .

Stefanos Makariadis, Avrilia Konguetsof and Basil Papadopoulos (Duth)Parametric Fuzzy Implications Produced Via Classes of Strong NegationsDemocritus University of Thrace 28 / 37



Figure: Graph of the Implications I 7α, I
8
α and I 9α
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Table of the generated parametric implications

Table: Table of Parametric Implications Via Classes of Strong Negations

Parametric Implications

I 1λ(x , y) =
1−min{x, 1−y

1+λ·y }
1+λ·min{x, 1−y

1+λ·y }
I 2λ(x , y) =

1−x· 1−y
1+λ·y

1+λ·x· 1−y
1+λ·y

I 3λ(x , y) =
1−max{x+ 1−y

1+λ·y −1,0}
1+λ·max{x+ 1−y

1+λ·y −1,0}
I 4ω(x , y) =

ω

√
1−

(
min

{
x , ω

√
1− yω

})ω
I 5ω(x , y) =

ω
√

1− xω + (x · y)ω

I 6ω(x , y) =
ω

√
1−

(
max

{
x + ω

√
1− yω − 1, 0

})ω
I 7a (x , y) =

√
(a2 − 1) .

(
min

{
x ,
√
(a2 − 1)y2 + 1 + α · y

})2

+ 1 +

a ·min
{
x ,
√

(a2 − 1)y2 + 1 + α · y
}

I 8a (x , y) =

√
(a2 − 1) · x2 ·

(√
(a2 − 1) y2 + 1 + α · y

)2

+ 1+ a · x ·(√
(a2 − 1) y2 + 1 + α · y

)
I 9a (x , y) =

√
(a2 − 1) .

(
max

{
x +

√
(a2 − 1)y2 + 1 + α · y − 1, 0

})2

+ 1+

a ·max
{
x +

√
(a2 − 1)y2 + 1 + α · y − 1, 0

}
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Conclusion

The field of fuzzy implications has been surveyed by many researchers,
resulting in the creation of many strategies for the generalization of fuzzy
implications.
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Conclusion

Utilizing the classes of strong fuzzy negations (Suggeno, Yager and
Souliotis-Papadopoulos) and the strict fuzzy t-norms (T-minimum,
T-product and T-Lukasiewicz), a strong algorithmic procedure of finding a
parametric fuzzy implications was produced. This comprises the result of
the research. In other words, a mathematical tool for the achievement of
approximate reasoning was created.
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