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Abstract. In this paper we present a new Fuzzy Implication Generator
via Fuzzy Negations which was generated via conical sections, in combi-
nation with the well-known Fuzzy Conjunction T-norm = min. Among
these implications we choose the most appropriate one, after comparing
them with the empiristic implication, which was created with the help
of real temperature and humidity data from the Hellenic Meteorologi-
cal Service. The use of the empiristic implication is based on real data
and also it reduces the volume of the data but without cancelling them.
Finally, the pseudo-code, which was used in the programming part of
the paper, uses the new Fuzzy Implication Generator and approaches
the empiristic implication satisfactorily which is our final goal.

Keywords: Fuzzy implication - Empiristic implication - Fuzzy
negation via conical sections

1 Introduction

The Theory of Fuzzy Implications and Fuzzy Negations plays an important
role in many applications of fuzzy logic, such as approximate reasoning, formal
methods of proof, inference systems, decision support systems (cf [2] and [5]).
Recognizing the above important role of Fuzzy Implications and Fuzzy Nega-
tions, we tried to construct Fuzzy implications from Fuzzy negations, so that
we could change the implication with one parameter, thus giving an algorith-
mic procedure of the “if...... then...... ” rule. The tools for this construction,
namely a fuzzy implication generator, were mainly the conclusions of (cf [11])
and in particular the following formula 1

N(z)=+(a? =122 +1+azx, z€]0,1], a<0. (1)

producing fuzzy negations via conical sections and Corollary 2.5.31. (see [1]).
The combination of these two through the fuzzy conjunction T-norm = min
gave us an algorithmic procedure for the evaluation of the best implication with
respect to the problem data. For the evaluation of the best implication we used
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the empiristic implication (see [8]) as a comparison measurement. The empiristic
implication does not satisfy any of the properties of the fuzzy implications and
has no specific formula, meaning it is not a function. However, the choice of
this particular implication was not random as it was based on its ability to be
directly calculated by the empirical data without being affected by the amount
of the data.

The paper follows the following structure: The section Preliminaries presents
the theoretical background of the paper, such as the definitions of the Fuzzy
Implications, Fuzzy Negations and Triangular norms. The section Main Results
shows the implication which is constructed by a strong fuzzy negation and a
t-norm with Tps(z,y) = min{x,y}. Next, the empiristic implication and the
algorithm for its calculation are presented. The data used are real, such as the
average monthly temperature and the average monthly relative humidity, two of
the most important climatic variables in meteorology (see [4]). Furthermore, the
algorithmic process for finding the best fuzzy implication among the empiristic
implication, the three known implications from the literature (Kleen-Dienes,
Lukasiewicz, Reichenbach) (see [1]) and the constructed parametric implication
is analysed. The calculation of the implications with the use of data was done
in the Matlab programming environment. We present the documentation of the
Matlab code which was used to calculate the implications.

2 Preliminaries

The following short theoretical background is important in order to understand
this paper.

2.1 Fuzzy Implication

In the literature we can find several different definitions of fuzzy implications.
In this paper we will use the following one, which is equivalent to the definition
proposed by Kitainik [6], (see also [3] and [1]).

Definition 1. A function I : [0,1]2[0,1] — [0,1] is called a fuzzy implication if
for all x,x1,x2,y,y1,y2 € [0,1] the following conditions are satisfied:

(I1) z1 < xo then I(x1,y) > I(x2,y), i.e, I(-,y)is decreasing,
(I2) y1 <ya then I(z,y1) < I(x,y2), i.e., I(x,-) is increasing,
(I3) I1(0,0)=1
(14) I(1,1) =1
(I5) I(1,0)=0

Example 1. Some examples of Fuzzy Implications are given below:
Kleene-Dienes: Ixp(z,y) = max{l — z,y}

Lukasiewicz: Ing(x,y) = min{l,1 —z + y}

Reichenbach: Irc(z,y)=1—2x+x-y
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2.2 Fuzzy Negations
The following definitions and examples can be found [1,3,9], and [10].

Definition 2. A function N : (0,1) — [0,1] is called a Fuzzy negation if
(N1) N(0)=1, N(1)=0
(N2) Nis decreasing

Definition 3. A fuzzy negation N is called strict if, in addition,
(N3) N is strictly decreasing,

(N4) N is continuous,

A fuzzy negation N is called strong if the following property is met,
(N5) N(N(z)) ==, z€[0,1]

Example 2. Ezxamples of Fuzzy Negations are given below.
Ni(z) =1—2a2, strict
Ng(z) =1—+/z, strict

NNz) = 11;\7;, A€ (—1,+00) strong Sugeno class

NY(z)=(1- x“’)%, w € (0,400) strong Yager class

Remark 1. The paper [11] proves a new family of strong fuzzy negations, which
is produced by conical sections and is given from the Eq. (1), which will play a
key role in building the algorithmic procedure we propose in the section Main
Results.

2.3 Triangular Norms (Conjunctions)

The Triangular norms were introduced by Menger [9] and were later recon-
structed by Schweizer and Sklar [10] in the form they have today. In essence,
they are a generalization of the classical binary conjunction (A) into a fuzzy
intersection. The following definition can be found in the monograph by Klement
et. al [7], (see also [1]).

Definition 4. A function T : [0,1)° — [0,1] is called triangular norms shortly
t- norm, if it satisfies, for all x,y € [0, 1], the following conditions:

(T1) T(z,y)=T(y,x) (commutativity)

(T2) T(z,T(y,2)) =T(T(x,y),2)

(T3) if y<z, then T(x,y) <T(z,z) (monotonicity)

(T4) T(x,1) =z (boundary condition)

Table 1 lists a few of the common t-norms.
In the paper we will use the most basic of all t-norms, which is the minimum
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Table 1. Table basic t-norms

Minimum Ty (z,y) = min{z, y}
Algebraic product | Tp(z,y) =z-y
Lukasiewicz Trx(z,y) = max(x +y — 1,0)
0 ,y €10,1
Active product Tp(z,y) = ) wY [ )
min(z,y) otherwise

0 z+y<1

min(xz,y) otherwise

Nilpotent minimum | T (z,y) = {

3 Main Results

3.1 Construction of Fuzzy Implications via Strong Negations

The main purpose of this work is to create a two plays function that satisfies
Definition 1, utilizing the temperature and humidity data given by the Hellenic
National Meteorological Service. That is, the construction of an implication that
gives the degree of truth of the two variables, the temperature and the humidity.
To achieve this, the two variables are normalized with the help of fuzzy sets.
In this way the temperature gets values of [0, 1] and the humidity gets values
of [0, 1], which is the degree of truth of the two variables. For example, if the
temperature between [21°,31°] degrees is considered high, then it has a degree
of truth 1. And similarly if the humidity between [40%, 50%] is considered low,
then it has a degree of truth of 0.7. Our goal is to construct an implication that
gives the degree of truth, as does the statement below:

“If the temperature is high, then the humidity is low.”

To what degree of truth can we respond to this statement?

This is our intention, that is, to find an implication that is close enough to
the correlation of the two variables, the temperature and the humidity, as are
shown in our data. But to find such an implication there must be a comparison
measure, that is, we want from our data to ensure the degree of truth of the
temperature and the humidity pair as they are given. The comparison measure
in the present work is the empiristic implication that uses all the data in order
to produce a table in which in the first row and the first column there will be the
data grouped into classes and in each cell there will be the corresponding degree
of truth of the data. Then, we compare each of the Kleen-Dienes, Lukasiewicz,
Reichenbach (see [1]) and the parametric implications which will be generated,
with the empiristic one, using the square error of the difference of the aforemen-
tioned implication tables from the empiristic implication table.

The smallest square error will give the best implication.

In book [1], and in particular in Corollary (2.5.31), the implication generated
by a strong fuzzy negation and a t-norm is examined and the formula

I(x,y) = N(T(:Z?, N(y))a T,y € [07 1] (3)
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is proposed. Using the above implication (3) (see 3) with t-norm (2) (see 2) and
the formula (1) (see 1) with parameter o and after the appropriate calculations,
the following equation occurs.

I(z,y) = \/(&2—1).(min (x,\/m—i-ay))z—l-l
+ a. min (m,\/m—i—ay) ,y €[0,1],a <0

The above implication of (equation a), which is a new generator fuzzy implica-
tions, is important because it has the parameter o which helps us to use the
implication on our data and at the same time examine for which value of «
we have the best approach. Hence, an algorithmic process of finding a better
implication is created which will play an important role in the course of the
paper.

(equation a)

3.2 Empiristic Implication

In order to be able to estimate which of the proposed implications approaches the
pairs (Temperature, humidity) of the Hellenic Meteorological Service, we need to
have a comparison measurement. In this paper we use the empiristic implication
as a measure see [8]. The empiristic implication will be presented while explaining
the steps of the algorithm, based on our data, which derive from the Hellenic
Meteorological Service and are the average monthly temperature and the average
monthly humidity of the last five years from the 13 regions of Greece (see Fig. 1,
Fig.2).

The Temperature Variable
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Fig. 1. Temperature variable
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% The Humidity Variable
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Fig. 2. The humidity variable

Our goal is to find which implication approaches best our data dependence
(temperature and humidity), giving us as a result the degree of the true coex-
istence of the two corresponding values. For example, we would like to see the
degree of truth of the statement:

if the temperature is 20 °C then the humidity is 60%

First, we find the table representing the empiristic implication. For the construc-
tion of the empiristic implication, we divide the 780 temperature and relative
humidity data into 11 classes with the use of the Sturges type

c=1+1logn" S c=1+log,(780) & c =1+ 108(780) . _ 196 (4)
log(2)

after first placing them in ascending order. Each class has its median as a rep-
resentative. This is how we create the empiristic implication table, which has
the medians of the humidity classes in the first row while the medians of the
temperature classes are in the first column. Each cell of the table is divided by
the sum of the column in which it belongs. In this way, we have in each cell the
degree of the truth of the coexistence of the values of the corresponding column
and row of the cell (see Table2). Then we normalize the temperature and the
humidity medians. Next, we check first whether the three known implications
(Kleen-Dienes, Lukasiewicz, Reichenbach) (see [1]) approach the table above.
Then, we examine the norm of each of the above implications with the empirical
implication. The results are as follows.
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Table 2. Table of the empiristic implication

0.0282

0.0141

0.0423
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0.0563
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0.1127
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0.0141

0.0704
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0.0845
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0.0704

0.1268

0.2113

0.1571

0

0.0563

0.0423

0.1127

0.0986

0.1408

0.1127

0.1408

0.3000

0.0141

0.0423

0.0563

0.0704

0.1408

0.0986

0.1408

0.1831

0.1690

0.0857

0.0141

0.0423

0.0845

0.0423

0.1268

0.0986

0.0845

0.1549

0.1268

0.1127

0.1143

0.0423

0.0282

0.1408

0.0845

0.1972

0.0563

0.0423

0.1690

0.0563

0.1127

0.0714

0.0563

0.0563

0.1268

0.1268

0.1268

0.1690

0.1127

0.0845

0.0704

0.0423

0.0286

0.0845

0.1268

0.1831

0.1972

0.0845

0.0986

0.0845

0.0423

0.0704

0.0141

0.0143

0.1127

0.2254

0.1408

0.1127

0.1127

0.1268

0.0845

0.0282

0.0563

0.2676

0.1690

0.1549

0.1549

0.0704

0.0423

0.0704

0.0563

0.0141

0.3803

0.3380

0.0986

0.0563

0.0845

0.0141

0.0141

0

0

The Results of the Norms. The squared error of the two implications
(empiristic and Kleen-Dienes) gives the result is 6.2465.
The squared error of the two implications (empiristic and Kleen-Dienes) gives
the result is 8.7386.
The squared error of the two implications (empiristic and Kleen-Dienes) gives
the result is 7.4448.
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After the examination of the three implications is completed, we proceed to
find the best parameter a < 0 that we have from the (equation a). We have the
best approach for the value a = —3 and with a very good approach the squared
error of the two implications (empiristic and Kleen-Dienes) gives the result is
3.8425 (see Fig. 3).

Remark 2. To achieve our goal, that is, to approach the empiristic implication
table, we used 3 linguistic variables (low, medium and high) for temperature and
humidity respectively.

[a,b,c,d] = [—1.33 — 1.33 7 12] is low temperature

[a,b,c,d] = [10 13 15 18] is medium temperature

[a,b,¢,d] = [16 21 30.21 30.21] is high temperature

[a,b,c,d] = [31.01 31.01 40 45] is low humidity

[a,b,c,d] = [43 50 60 65] is medium humidity

[a,b,c,d] = [64 75 87.39 87.39] is high humidity

(see Fig. 4, Fig.5). Also, to avoid the property of the implication I (0,1) = 1,
which reinforces the falsehood, we tried to obtain the values of x # 0.

Graph of Membership Function of the Temperature variable
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Fig. 4. Membership function of the temperature.
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Graph of Membership Function of the Humidity variable
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Fig. 5. Membership function of the humidity.

3.3 The Documentation of the Matlab Code

The data are in the file Data.xlsx. Our application includes a case study, which
uses real climatic data (average monthly temperature and average monthly rela-
tive humidity) of the last five years 2015-2019 from the 13 regions of Greece for
the 12 months of each year and evaluates the empiristic implication, with fuzzy
implications we created. The application was implemented in Matlab R2018b
and includes the steps:

1.

©w

We load the data onto the program, which creates two 780 x 1 tables. The
lines in the tables are the 780 observations and the columns in the tables are
the temperature and relative humidity variables. Temperature, Humidity.
We find the minimum and maximum values of the columns that make up
the range of the variables.

We have the original table with the first column is X and the second is Y.
We add to this table a column which is the increment number in order not
to miss the original pairs (xi, yi). The column we add is the third one.
Later, we create a different table for X together with its increment number
and a different one for Y. Then, we have the initial position for each X and
Y so we sort in ascending order according to the values. We notice that in
the first column we have X and Y in ascending order and in the second
column their position in the original data.

We normalize using trapezoidal membership functions

We apply the Sturges rule: (see 4) in order to divide the sorted data columns
in classes.



408

8.

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.

27.
28.

29.
30.

31.
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Next, we create 11 classes for each sorted table.

We add the classes to the third column in the sorted tables. The format of
the sorted tables is: the first column has X in ascending order, the second
column has the initial position and the third column has the class.

Then, we sort the above two tables by increment number to get the data
back to their original position along with their classes.

We put the above tables in a table where the first column is X, the second
is the class of X, the third is Y and the fourth is the class of Y.

We create a Zero Table. The table will be a column larger and a column
smaller to place the medians.

Finally, we create the table we want without adding values to the first row
and column.

We create medians for the classes of X and place them in the Final Table.
We create medians for the classes of Y and place them in the Final Table.
The Final Table has the medians of the classes of Y as its first row and the
medians of the classes of X as its first column.

We create a new table who has the first row and the first column with
medians.

We form the rest of the table by calling the function of parametric implica-
tion.

The table imp1 is the table of the empiristic implication.

We will check three well-known implications with the data we have.

The first is Kleen-Dienes (see Examplesl.)

Table A is an 11 x 1 column table containing the temperature medians.
Table B is a 1 x 11 row table containing the humidity medians.

Table Al is an 11 x 1 column table containing the nondimensionalized values
of the temperature medians.

Table B1 is a 1 x 11 row table containing the nondimensionalized values of
humidity medians.

The final table of Kleen-Dienes implication is imp2 and the control of the
norm of the two implications (empiristic and Kleen-Dienes) is norl = norm
(impl-imp?2).

The second implication is Lukasiewicz (see Examplesl.)

The final table of the Lukasiewicz implication is imp3 and the control of the
norm of the two implications (empiristic and Lukasiewicz) is nor2 = norm
(impl-imp3).

The third implication is Reichenbach (see Examplesl.)

The final table of Reichenbach’s implication is imp4 and the control of the
norm of the two implications (empiristic and Reichenbach) is nor3 = norm
(impl-imp4).

The final table of Parametric’s implication is OtherTable and the control
of the norm of the two implications (empiristic and Parametric) is nord =
norm (impl-OtherTable).
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4 Conclusions

It is now evident that the type of the strong fuzzy negations that are generated
via conical sections, combined with the fuzzy conjunction (T-norm = min), give
us a robust algorithmic process of finding the more appropriate fuzzy implication.
So we see that a purely mathematical process and even a geometric one is a
powerful tool when it is well supported to achieve approximate reasoning. In
addition, a thorough and careful study of the data in the correct order will greatly
reduce the computational complexity. Our future research on the applications of
fuzzy implications will continue with the aim of achieving better results of the
convergence of the empiristic implication and the implications the strong fuzzy
negations that are generated via conical sections.

Acknowledgements. We would like to thank the Hellenic National Meteorological
Service for the quick reply to our request for the concession of the climatic data of the
last five years, in order to be used in the present paper (see [4]).

References

1. Baczynski, M., Jayaram, B.: Fuzzy Implications. Springer-Verlag, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-69082-5_1

2. Fodor, J.C.: Contrapositive symmetry of fuzzy implications. Fuzzy Sets Syst. 69,
141-156 (1995)

3. Fodor, J.C.; Roubens, M.: Fuzzy preference Modelling and Multicriteria Decision
Support. Kluwer, Dordrecht (1994)

4. Hellenic National Meteorological —Service.  http://www.hnms.gr/emy/el/
climatology /climatology_month

5. Jenei, S.: A new approach for interpolation and extrapolation of compact fuzzy
quantities. The one dimensional case. In: Klement, E.P., Stout, L.N. (eds.) Pro-
ceedings of the 21th Linz Seminar on Fuzzy Set Theory, Linz, Austria, pp. 13-18
(2000)

6. Kitainik, L.: Fuzzy Decision Procedures with Binary Relations. Kluwer, Dordrecht
(1993)

7. Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer, Dordrecht (2000)

8. Mattas, K., Papadopoulos, B.: Fuzzy empiristic implication, a new approach. In:
Mattas, K., Papadopoulos, B. (eds.) Modern Discrete Mathematics and Analysis,
SOIA. Springer Optimization and Its Applications, vol. 131, pp. 317-331 (2018)

9. Menger, K.: Statistical metrics. Proc. Nat. Acad. Sci. USA 28, 535-537 (1942)

10. Schweizer, B., Sklar, A.: Probabilistic Metric Spaces. North-Holland, New York
(1983)

11. Souliotis, G., Papadopoulos, B.: An algorithm for producing fuzzy negations via
conical sections. Algorithms 12(5), 89 (2019). https://doi.org/10.3390/a12050089


https://doi.org/10.1007/978-3-540-69082-5_1
http://www.hnms.gr/emy/el/climatology/climatology_month
http://www.hnms.gr/emy/el/climatology/climatology_month
https://doi.org/10.3390/a12050089

	Application of Algorithmic Fuzzy Implications on Climatic Data
	1 Introduction
	2 Preliminaries
	2.1 Fuzzy Implication
	2.2 Fuzzy Negations
	2.3 Triangular Norms (Conjunctions)

	3 Main Results
	3.1 Construction of Fuzzy Implications via Strong Negations
	3.2 Empiristic Implication
	3.3 The Documentation of the Matlab Code

	4 Conclusions
	References




